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Abstract 
Negative quartet invariants play an important role in 
direct procedures: they can be actively used in the 
phasing process or, in a passive way, for selecting the 
correct solution in multisolution approaches. Unfortu- 
nately their average reliability is small. The use of the 
second representation of the quartets may lead to 
improved estimates but calculations are expected to be 
too extensive even for modem computers. The simple 
and fast process described in this paper provides 
improved quartet estimates by embedding triplet and 
quintet estimates. The first applications of the method are 
satisfactory. 

Symbols 
N is the number of atoms in the primitive unit cell. For 
unequal-atom structures, N is replaced by Neq = try/cry, 
where cr i -- ~--~-~~l Zj (Zj is the atomic number of the jth 
atom). 

E h -  Rh exp(@h), the normalized structure factor of 
index h. 

e i : R2i - 1. 
• 4 = ~0h + 99k + 9h + tpm with h + k + l + m  = 0. 
GO p : 2RiRjRp/N i/2 
B = 2RhRkRIRm/N. 
aijpq r : 2 e i R j e p e q e r / [ g  (N1/2)]. 
Dl(X ) = ll(x)/lo(x ), ratio of modified Bessel func- 

tions of orders one and zero. 

Introduction 

We use in this section the following notation: 

E 1 = E h, E2 = E k, E3 = E I, E4 = Era, 

E 5 = Eh+ k, E6 --- Eh+l, E7 = Ek+ I 

Two formulas are today widely used for estimating 
quartet invariants ~4: 

(1) Giacovazzo's (1976, 1980) formula: 

where 

e(t~4) = [2rrl0(G')] -l exp(G' cos ~)4), (1) 

G' = B(1 + e 5 + E 6 + 67)/(1 + Q) 

Q = [(ele 2 + E3E4)E 5 + (EIE' 3 + E2E4)E 6 

+ (EIE 4 + E2E~3)E7]/2N. 

(2) Hauptman's (1975) formula: 

P(~4) = 1/L exp ( -2B  cos ~4)lo(Zs)lo(Z6)lo(Z7), 

where 

(2) 

Z 5 -- [G~25 d- G~45 q- 2GI15G345 COS tJ~4]l/2 

Z 6 = [G1236 + G~46 + 2GI36G246 COS t~4]1/2 

Z 7 = [G237 --I- G247 d- 2G237GI47 cos t~4] !/2. 

L is a suitable normalizing constant that may be 
calculated by numerical methods. Some recent papers 
(Giacovazzo, Burla & Cascarano, 1992; Burla, Casca- 
rano & Giacovazzo, 1992) addressed the practical role of 
the quartet invariants in direct procedures. The combined 
active use of the positive estimated quartets and the 
triplet invariants was not advised both because of the 
high correlation between positive estimated quartets and 
triplets and because of the lower accuracy of the quartet 
estimates. 

More recently (Burla, Cascarano, Giacovazzo & 
Guagliardi, 1994), the accuracy of the quartet estimates 
has been improved by exploiting the prior information on 
triplets, in particular the triplet invariant estimates 
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provided by the PIo formula (Cascarano, Giacovazzo, 
Camalli, Spagna, Burla, Nunzi & Polidori, 1984). 
However, Plo is only applied to triplets with large Gijp 
values; thus, the method is unable to improve the 
negative quartet reliability. Such quartets are not 
correlated with active triplets, and therefore introduce 
supplementary information in the phasing process. 
Indeed they play an important role in direct procedures 
both as figures of merit (for picking up the correct 
solution in a multisolution approach) and as active phase 
relationships (Sheldrick, 1991). Particularly powerful is 
the combined active use of negative estimated triplets 
(via the Plo formula) and negative estimated quartets 
(Cascarano, Giacovazzo, Molitemi & Polidori, 1994): 
such a combination often makes the difference between 
success and failure. 

Any phasing process would benefit from improved 
negative quartet estimates. However, the use of the 
second representation of the quartets (i.e. special sextets) 
would be too time consuming even for modem 
computers. In this paper, a new method is described that 
estimates quartets by combining triplet and quintet 
invariants. The procedure is fast and easily transferable 
to any direct-methods package. The method also involves 
the original quartet estimates via (1) or (2). Since (1) is of 
simpler use and is reliable even for small structures 
(Altomare, Burla, Cascarano, Giacovazzo & Guagliardi, 
1993), we focus our attention only on the estimates 
provided by (1). 

Strengthening of quartet estimates: the method 

Let us consider the quartet invariant 

4"4 = (Ph + ~Ok + (1/91 "~- (Pm (3) 

and the triplet invariant 

4"3 ~ ~Oh -~- ~q --  ~Oh-tq" (4 )  

Their difference, 

4"5 = 4"4 --  4"3 = tPk "31- (1/91 "31- ~m --  ~q  -[" ~0h+q, (5 )  

is a quintet invariant that may be estimated through 
different formulas: a semi-empirical one by Van der 
Putten & Schenk (1977), the formula by Fortier & 
Hauptman (1977) derived via the theory of the joint 
probability distribution functions, and the formula by 
Giacovazzo (1977). We refer only to the last method, 
which combines simplicity with efficiency. If both 4"5 
and 4"3 are estimated, the last via the Cochran (1955) 
relationship or via the Pl0 formula, a back-estimate for 4"4 

arises. Since q is a free vector for a given 4"4, several 
triplets of type (4) can be found. Thus, several quintet- 
triplet pairs can be used for a given quartet and the back- 
information on 4"4 may increase remarkably. Besides 

triplets (4), triplets like 

4"3 - -  qgk "3L ~q --  qgk-t-q 

4"3 = tPI "3t- ~q  --  (Pl+q 

4"3 --- ~m "31- ~0q --  ~m+q 

can also be used, each of which specifies the correspond- 
ing quintet involved in the method. Since any quintet 
depends (in its first representation) on 15 magnitudes, the 
approach is able to exploit, for each quartet, the 
information contained in a wide region of reciprocal 
space. Let us discuss separately the centrosymmetric and 
the noncentrosymmetric cases. 

The noncentrosymmetric case 

It is assumed that P(4"3), P(4"4) and P(4"5) are all of 
the von Mises type: 

e(4"i) = [2zrlo(Gi)] -l exp(Gi cos 4"i), i = 3, 4, 5. (6) 

The maximum of the distribution will be in 0 or in zr 
according to whether G is positive or negative. From the 
jth pair (4"3,j, 4"54), the following information o n  t~ 4 Can 
be derived: ¢~4 is avon  Mises variable with reliability 
parameter G4, j defined by the equation (Giacovazzo, 
Camalli & Spagna, 1989) 

Dt(G4,j) = Ol(Gs,j)Ol(Gs.j). (7) 

Positive values of G3. j and G5. j will generate positive 
estimated quartets, while negative estimated quartets will 
be obtained when G3, j and G5. j have opposite signs. The 
information from the various pairs (¢~3,j, ¢J~5,j) may be 
combined by summation of the various G4,j; the final 
reliability parameter will be 

~'~ a4. j, 
J 

to which the intrinsic information arising from (1) must 
be added. The final reliability parameter is then 

G 4 = G' + ~ G4, j. (8) 
J 

The centrosymmetric case 

It is assumed that the sign probability for 4, 3 and 4"5 is 
described by the formula 

P+(4"i) -~ 0.5 + 0.5 tanh G,. 

From the jth pair (4"34, 4"5,), the following information 
on 4"4 Can b e  d e r i v e d :  

P+(4",t,j) = P+(4"a,j)P+(4"5.j) + P-(4"a,j)P-(4"5,j), 

which can be transformed into G4, / by recalling that 
tanh-l(y) = ½1n(1 + y)/(1 - y). Therefore, 

G4, j = ½ [ln e+(4"4,j) - In P-(q)4,/) ]. 
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The information arising from various pairs (¢~3,j, ~5,j) 
may be combined by summing the various G4,j, to  which 
the intrinsic information arising from the quartet itself 
should be added. The final reliability parameter is again 
given by (8). 

While the estimates of the triplet invariants do not 
require special considerations (they come directly from 
the P10 formula; if P~0 estimates are not available, the 
Cochran formula may be used), quintet estimates deserve 
to be discussed in some detail. 

Quintet estimation 

Let us consider the quintet (5) and denote: 

E 1 = Ek,  E 2 = El ,  E 3 = Era, E 4 = E_q ,  

E 5 = Eh+ q, E6 - -  Ek+l, E7 = Eh+ I 

E 8 = Ek_q,  E 9 = Eh+k+q, E10 = Eh+k, (9) 

E11 =E1_ q, E12=Eh+l+ q, E 1 3 = E m -  q, 

E14=Eh+m+ q, E 1 5 = E  h. 

The reliability parameter for the quintets is (Giacovazzo, 
1977; Burla, Polidori, Nunzi, Cascarano & Giacovazzo, 
1977) 

G 5 = [Gi2345/(1 + 6NU2)](A + B)/(1 + C/2N), (10) 

where 

15 
A = E 8  i (11 )  

i=6 

B = 86813 + 86815 -~- 86814 + 87811 + 87815 -a t- 87812 

-3 I- 88810 + 88614 -3 t- 88812 -Jr- 610815 -3 I- 89810 

"-{- 811814 "-{- 89811 + 89613 + 812813 (12) 

C = 818286 + EIE3E 7 "-{- EIE4E 8 "-~ 818589 + ~1810815 

--{- ~lEllEl4 --{- ElE12813 -~ E2E3EI0 --{- 8284811 

• -J¢- 8285812 -3 t- 8287815 .-Jr- 8288814 71-" 8289E13 

-a t- 8384813 -Jr- 8385814 -3 t- 8386815 -a t- 8388612 

-3 I- 8389811 -3 I- 8485815 -3 I- 8486814 -a t- 8487812 

+ 8489810 + 8586813 + 8587811 + 8588810. (13)  

C is a scaling constant that is assumed to be equal to zero 
when it is negative. The quintet is expected to be positive 
or negative according to whether G5 is positive or 
negative. 

Negative quintets are obtained by a modified version 
of SIR92 (Altomare, Cascarano, Giacovazzo, Guagliardi, 
Burla, Polidori & Camalli, 1994) in the following way: 

(a) A certain number of weak reflections are selected 
by the program (in the default conditions). 

(b) Psi-zero triplets are calculated and stored for 
passive use (Cochran & Douglas, 1957) as well as for 
active use (Giacovazzo, 1993; Cascarano & Giacovazzo, 
1995). 

Table 1. Code name, space group and crystallochemical 
data for test structures 

Structure Space 
code group Molecular formula Z 

APAPA (t) P 4 1 2 1 2  C3oH37NIsOI6P2 • 6H20 8 
GRA4 (2) Pi C3oH22N204 2 
MBH2 (3) PI CI5H2403 3 
NEWQB ('t) Pi CuH20N205 4 
PGE2 (5) PI C20H3205 1 
QUINOL (6) R3 C6H602 54 
SCHWARZ tT) PI C~H70027 1 

References: (1) Suck, Manor & Saenger (1976); (2) Crystallography 
group of York University (private communication); (3) Hursthouse 
(unpublished); (4) Grigg, Kemp, Sheldrick & Trotter (1978); (5) 
DeTitta, Langs, Edmonds & Duax (1980); (6) WaUwork & Powell 
(1980); (7) Schweizer (unpublished). 

Table 2. Negative estimated quartets and quintets for the 
centrosymmetric test structures 

n is the number of invariants with reliability parameter larger (in 
modulus) than a given ARG, nw is the number of wrong estimates 

Quartets Quintets 
A R G  n (nw) n (nw) 

GRA4 
0.4 3212 (508) 352922 (42565) 
0.8 1164 (55) 170869 (10336) 
2.0 61 (1) 37445 (508) 
2.4 36 (0) 24537 (219) 
4.5 1 (0) 3092 (7) 
7.5 241 (0) 

NEWQB 
0.4 512 (145) 18920 (4696) 
0.6 68 (13) 3858 (589) 
0.8 11 (o) 966 (68) 
1.4 38 (0) 

QUINOL 
0.4 945 (188) 43191 (8297) 
0.6 158 (20) 11993 (1626) 
1.0 14 (1) 1677 (204) 
1.2 4 (0) 712 (30) 
2.4 21 (0) 

(c) Negative quartets are obtained as a sum of psi-zero 
triplets and estimated via (1). The sum of the two triplets 
creates a quartet with at least one small cross magnitude: 
then (1) selects those with negative G' value. 

(d) Negative quintets are obtained as sums of the 
negative quartets in (c) and of the triplets with large Gij p 
values stored for active use. Quintet estimates are then 
obtained via (10). 

The accuracy of the method here described relies on 
the quintet reliability. This has been scarcely considered 
in the literature, probably because of the belief that 
negative quartets are always much more accurate than 
negative quintets. But this is not always true. For the test 
structures quoted in Table 1, we compare in Tables 2 and 
3 negative-quintet and negative-quartet reliabilities. It is 
seen that quintet estimates are always superior to quartet 
estimates, except for APAPA, which has a very large 
value of N. For structures of such complexity, quintet 
reliability is expected to be small. Very likely some 
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Table 3. Negative estimated quartets and quintets for the 
noncentrosymmetric test structures 

n is the number of invariants with reliability parameter larger (in 
modulus) than a given argument  ARG,  % is the percentage of invariants 
with wrong cosine sign estimate, (~)0 is the average value of the 
invariant phases. 

Quartets Quintets 

Table 4. Centrosymmetric test structures 

The quartets estimated negative by (1) and quoted in Table 2 are re- 
estimated by (8). They split into two subsets, positive and negative 
estimated quartets, n is the number of quartet invariants with reliability 
parameter larger (in modulus) than a given argument  ARG,  n w  is the 
number of wrong estimates. 

A R G  n % (~)o n % (¢p)o A R G  

A P A P A  G R A 4  
0.0 1104 59 100 90147 50 90 0.4 
0.4 36 72 121 0.8 
0.8 9 78 125 2.0 

4.2 
M B H 2  7.0 

0.4 1342 69 I 13 2370 77 119 9.0 
0.8 70 80 122 25 84 128 

N E W Q B  

PGE2 O.4 
0.4 4000 63 104 42146 72 115 0.6 
0.8 985 71 113 2879 81 125 0.8 
1.6 51 78 128 109 94 138 1.4 

S C H W A R Z  Q U I N O L  
0.4 2117 66 108 9915 74 118 0.4 
0.8 196 77 122 323 86 130 1.0 
1.6 3 67 101 1 100 167 1.6 

2.4 
5.0 

improvement could be obtained by making full use of the 
complete first representation of the quintets, that is by 
involving in the calculations those supplementary cross 
reflections that are generated by the existence of special 
cross terms characterized by a Wilson coefficient e > 1 
(Giacovazzo, 1980, p. 338). This topic is explored in a 
subsequent paper. 

The procedure and its applications 

Let us consider the 15 magnitudes in the first 
representation of ~5 as listed in the set (9). Seven of  
them, R I , R 2, R 3, R6, R7, R10 and R15, also belong to the 
first representation of the quartet (3). Since quartets (3) 
are constructed in such a way that R15 is large and R 6, R 7 
and R~0 are small (these last are the cross magnitudes of 
t ~ 4 )  , the term 

D = els(e 6 + e 7 + el0 ) 

occurring in B [see (12)] is strongly negative. This has 
the following consequences. (a) Each quintet ~5,/ is 
strongly correlated with the quartet q~4. Thus each 
quintet ~5,j is expected to have the same sign as q~a. 
(b) The various quintets q~s,j are correlated with each 
other. Indeed, D does not depend on the specific vector q 
and will contribute to the estimation of all the q~5,/'s. 
Owing to (a) and (b), G 4 as determined by (8) will 
probably have the same sign as G', but will be much 
larger than it because of the strong correlation among the 
various coefficients G4, j. 

In order to break this correlation, we omit D from (12) 
and the term (e6-1 t -e7  + e 1 0 + e 1 5  ) f rom (11); corre- 

Positive estimated Negative estimated 
quartets quartets 
n (nw) n (nw) 

831 (392) 2853 (220) 
698 (309) 2695 (175) 
476 (173) 2363 (91) 
305 (87) 1962 (20) 
212 (54) 1516 (1) 
183 (45) 1204 (0) 

165 (66) 599 (87) 
114 (41) 376 (41) 
69 (24) 225 (12) 
18 (4) 35 (0) 

722 (359) 713 (53) 
354 (143) 114 (2) 
202 (66) 18 (0) 

94 (19) 
14 (0) 

Table 5. Noncentrosymmetric test structures 

The quartets estimated negative by (1) and quoted in Table 3 are re- 
estimated by (8). They split into two subsets, positive and negative 
estimated quartets, n is the number of quartet invariants with reliability 
parameter (in modulus) larger than a given argument  ARG,  % is the 
percentage of invariants with wrong cosine sign estimate, (¢,)0 is the 
average value of the invariant phases. 

A R G  

A P A P A  
0.0 
0.4 

M B H 2  
0.4 
0.8 
1.6 

PGE2 
0.4 
0.8 
1.6 
3.2 

S C H W A R Z  
0.4 
0.8 
1.6 
4.4 

Positive estimated Negative estimated 
quartets quintets 

n % (~)0 n % (¢~)0 

23 48 86 1081 59 100 
7 86 140 

223 57 86 600 83 129 
80 56 86 88 90 138 
11 64 81 3 100 126 

1033 47 94 1738 70 114 
699 48 91 964 75 120 
363 53 87 209 87 134 
116 57 79 13 100 143 

1140 55 85 906 79 124 
739 59 81 218 85 131 
348 62 77 11 91 122 

31 90 45 

spondingly, the scaling term (eleze 6 -4- ele3e7+ 
e l e l o e 1 5  + e 2 e 3 e l o  -4- e2e7e15 -[- e3e6e15 ) is e l i m i n a t e d  
from (13). In this way, the estimate of any ~5.j will 
mostly depend on those cross magnitudes that do not 
coincide with the cross terms of the quartet. 
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Table 6. Centrosymmetric test structures 

For each structure NPQ quartets are estimated positive via (1). When re- 
estimated via (8), some of them are expected negative and are here 
quoted. Some statistical results are shown. 

Negative estimated 
quartet via (8) 

ARG n (nw) 
GRA4 (NPQ = 5749) 

0.0 41 (0) 
2.0 38 (0) 
5.0 36 (0) 

NEWQB (NPQ = 1083) 
o.o 180 (60) 
0.4 94 (25) 
2.0 5 (2) 
2.8 l (o) 
5.0 

QUINOL (NPQ = 16958) 
o.o 585 (121) 
0.4 191 (33) 
2.o 7 (o) 

Table 7. Noncentrosymmetric test structures 

For each structure NPQ quartets are estimated positive via (1). When re- 
estimated via (8), some of them are expected negative. Some statistical 
results are shown. 

Negative estimated 
quartets via (8) 

ARG n % (@)0 

APAPA (NPQ = 20000) 
0.0 
0.4 1161 56 95 

MBH2 ( N t ~  = 1330) 
0.0 109 62 103 
0.4 40 63 100 

PGE2 (NPQ = 6097) 
0.0 87 49 90 
0.8 32 50 96 
3.2 1 100 146 

SCHWARZ (NPQ = 1728) 
0.0 53 77 118 
0.8 ! 2 83 128 
1.2 3 100 165 

We have then applied to the test structures the method 
here described: the quartets estimated negative by (1) are 
re-estimated via (8). The results are shown in Table 4 for 
centrosymmetric structures and in Table 5 for noncen- 
trosymmetric structures. We note two things. (a) A 
percentage of the quartets estimated negative by (1) are 
estimated positive by (8) with notable accuracy. The new 
approach is therefore able to pick up positive quartets 
among the set of quartets having small cross magnitudes. 
(b) The reliability of the quartets estimated negative via 
(8) is higher, and sometimes spectacularly higher, than 
via (1). APAPA is the expected exception. 

We wonder now if the method can be applied to 
quartets estimated positive by (1). We are interested to 
check if: (a) quartets with large cross moduli can be 

reliably estimated negative by embedding triplet with 
quintet invariants; (b) the positive-quartet reliability can 
be improved via the same method. The results shown in 
Tables 6 and 7 give a positive answer to both those 
questions: even for APAPA is possible to select a 
number of quartets with phases far from 2zr. 

Concluding remarks  

The method here described shows how the prior 
information contained in a large set of structure-factor 
moduli may be exploited for the estimation of low-order 
invariants. For each quartet, triplet estimates derived via 
the second representation are combined with quintet 
estimates to obtain the estimate of the selected quartet. 
The attention has been mostly focused on the negative 
quartets, but some tests have also been made for the 
positive ones. The reliability of the method is higher than 
that of the standard formulas by Giacovazzo (1976, 
1980) and Hauptman (1975). 
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